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Preface

The purpose of this study is to develop a code based on
the Approximate Navier Stokes (ANS) equations, to allow flow
computation at low Reynolds Number (less then 500,000) about
highly cambered airfoils. The camber may either be the
airfoil characteristic or created by deflecting portions of
the Leading edge (Slat) or Trailing edge (Flap), or both.

This study specifically looks at the highly cambered
Wortman FX 63-137 airfoil, fitted with flaps and slats at
various combinations of deflections and angles of attack.

The flow has been computed using the ANS equations in delta
form of the Vorticity Stream Function equations. Good
agreement with experimental results has been obtained for
small angles of attack.

The significance of this study is based on the fact that
recently there has been an increased application of low
Reynolds Number aerodynamics, Remotely Piloted Vehiclee
(RPV's), Helicopter rotors and turbine blades are only few of
such applications. This, combined with the dearth of
knowledge in this area has created an environment where
detailed information of the flow's structure is needed. It
is hoped that this study will help fill a portion of this
knowledge gap by providing to the practicing aerodynamicist
and experimenters, ¢the tool to allow numerical flow

prediction, and a reference data set on the wortman airfoil,

which is contained herein.
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Abstract
¥ T
The purpose of this study is to develop a code based on
the Approximate Navier Stokes (ANS) equations (in the
Vorticity Stream Function delta form). The Wortman FX 63-137
airfoil fitted with leading and trailing edge devices has
been analyzed at low Reynolds Number (100,000) at various
angles of attack and various deflection angles. ‘gesults are
compared to the experimental data. The agreement is very
good at small angles of attack. However, at large angles of
attack the disparity is larger, and improvements have been
recommended which will resolve this disparity. Overall the

present scheme produces very reasonable results, with good

repeatability and fast convergence, and has the potential of

being developed into an effective design tool. Thens:, /(4:'

xvi
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NUMERICAL STUDY OF THE INFLUENCE OF LEADING AND TRAILING

EDGE FLAPS ON THE PERFORMANCE OF AIRFOIL

|. Introduction

The aim of every aerodynamicist is to be able to predict
the aerodynamic characteristics of a given design. Accurate
prediction of these parameters is very important as they form
the basis for the designs of the aircraft's control and
propulsion systems, and hence effect the safety of the
vehicle.

The tools available to an aerodynamicist are the wind
tunnels and computational methods. To date, most aircraft
designs depend on wind tunnel testing and empirical data,
but, lately, some designs have also been developed primarily
through the use of computational methods. This has largely
been possible due to the enormous growth of research and
success in the area of Computational Fluid Dynamics (CFD).
Computational methods are more economical and faster compared
to wind tunnel testing and give much more detailed
information on flow characteristics. Qeometric changes and
their effects on flow can also be seen very quickly,
resulting in reliable design decisions.

Computational methods can be broken down into two

1




distinct techniques, finite element and finite difference

algorithms. This research is based on the finite difference

approach and is an attempt to develop a fast
algorithm for computing flow about arbitrary
(primarily airfoils), using the approximate
(ANS) equations. These equations are not as

Navier-Stokes (NS), but the advantages are

and efficient
bodies
Navier-Stokes
accurate as the

that the ANS

equations offer significantly reduced computational effort

and storage compared to the complete Navier Stokes equations.

Purpose and Scope

The basic purpose of this research is to develop a code

which would allow flow computation at low Reynolds Number

(less then 500,000) about highly cambered airfoil sections.

The high camber is usually produced by installing leading

edge (Slats) and trailing edge (Flaps) devices to the basic

section. These devices can then be rotated to effectively

change the shape (camber) and hence the aerodynamic

characteristics of the airfoil.

Significance. Motivation for this research is the fact

that extensive experimental and empirical data is available

for airfoils with flaps and slats at high Reynolds number,

but very little is known about the aerodynamic behavior of

highly cambered airfoils in low Reynolds number f'cw. The

second factor was the ready availability of experimental data

for the Wortman FX 63-137 in various configurations and at




. varying Reynolds number from the University of Notre Dame
[16] and the College of Aeronautics, Cranfield, England [28].
The third and most important factor, is that recently there
has been recently increased application of low Reynold number
aerodynamics, remotely piloted vehicles (RPV), helicopter
rotors, turbine blades and wind turbines are only few of
such applications. These are all characterized as having
either short chord length or low operating speed or both. A
diagram showing the range of Reynolds Numbers for several
applicatidns appears below as Figure 1. Therefore, it is
very natural to anticipate a vast need for performance
characteristics in the low Reynolds number regime, and how

these may be enhanced using various techniques.

i !03 SUPERSONIC
A N
) "HAAP & MINI-RPV's
B IO2 B8IRDS AND BATS -\
107!
= INSECTS
o - 10
g 2 u
-2 ] SPEED ~
g IO s( m/ls)
z -t
I
Q03
- 10 /7 - AIRPLANE * Values based on conditions
i '0_| (-~ i at about 70,000 feet.
104
DUBT PARTICLES
ARCHITECTURAL AERODYNAMICS
A A il [l 1 L i yy 1
o 102 103 10*  10° 10° 107 10° 10°
REYNOLDS NUMBER UTE
Figure 1 Chord Reynolds Number vs. Mach Number for a
variety of flight vehicles
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Before the issue of performance enhancement can be
discussed, it would be appropriate to highlight a typical
characteristic of airfoils in low Reynolds Number flow, the
formation of separation bubbles and their role in determining
the flow pattern and the performance characteristics of the
airfoil.

Extensive research has been carried out on separation
bubbles, and it has been determined that the significant
parameters affecting the formation of separation bubbles are
the angle of attack, profile geometry, Reynolids Number and
free stream turbulence [16:3]. The separation bubbles are
usually classified as either long or short, Arena and Muller
[3] summarize that long bubbles tend to decrease 1ift due to
lower suction peak, while short bubbles have negligible
effect on 1ift or suction peak.

The separation bubble forms as the fluid moving over the
airfoil encounters an adverse pressure gradient. If the flow
does not possess sufficient momentum to overcome this
gradient, the laminar boundary layer separates from the
surface and then undergoes transition to turbulent flow. It
then gains momentum by entraining fluid from the free stream,
and if the fluid gains sufficient momentum to overcome the
gradient, it will reattach to the airfoil surface. Hence
the process of separation and reattachment, creates a
reverse flow region over the airfoil surface, usually known

as the separation bubble. On the other hand, if the flow is




unable to gain sufficient momentum to reattach, then it
remains separated. This type of separation is known to yield
an open wake of an airfoil and is the primary cause of stall.
The performance of an airfoil may be enhanced by
management of the boundary layer using any one, or
combination, of the following techniques.
(a) Attachment of leading and or trailing edge devices
to the airfoil.
(b) Use of surface roughness.

(c) Suction and blowing.

Because this study is concerned primarily with the
effects of leading and trailing edge devices, it would be
appropriate to draw on general conclusions based on previous
work done in this area.

Leading Edge Device (Slat). The primary purpose of

these devices is to avoid or delay leading edge separation,
particularly at low Reynolds number. Positive deflections of
the leading edge (downwards) causes an effective reduction
of the angle of attack relative to the airfoil's leading
edge, and leads to downstream shift of the separation point.

Trailing Edge Device (Flap). Positive deflection of the

flap (downward) causes an increase in pressure acting on the
lower surface and a decrease of pressure on the upper
surface. This produces an increase in the circulation around

the airfoil, thereby increasing 1ift, but only at the




penalty of increased drag. The increase in drag is due to an
increase in the effective angle of attack of the trailing
section of the airfoil, and low pressure in the wake
downstream of the flap. The overall effect of the flap is to
shift the 1ift curve, without changing the slope. This may
be predicted by the following relation, derived using the
thin airfoil theory [12:492-517,14].

Ce

where a is the angle of attack and z is the maximum camber

= 2n(at+t22z)

It can be seen from this relation that the 1ift
coefficient will increase linearly as the camber is
increased. 1t should be mentioned that this relation is only
applicable to thin airfoils in ideal flow, but is not
applicable to highly cambered airfoils in viscous flow.

Viscous effects are generally nonlinear and therefore
cannot be approximated by such simple linear relations.
Hence, to be able to predict complex viscous flow patterns
effectively, we have to turn to mathematical models using
either the Navier-Stokes or the approximate Navier-Stokes
(ANS) equations. The main thrust of this study is to use the
ANS model to approximate the flow pattern and the performance
characteristics of the Wortman FX 63-137 airfoil, which has
been appropriately modified with slats extending to 13% and
flaps measuring 25% chord (a Fortran program named "AIRFOIL"

has been developed to carry out deflections of the




airfoil). To be able to analyze this problem the code
developed by Halim [11] has been extended from the purely
steady state laminar symmetric flow solver to the present
version. The present version is flexible, easy to use, and
can handle nonsymmetric turbulent flows. Using this code in
either steady state or time accurate unsteady solutions can
be obtained and either Neumann or Dirichlet Boundary
conditions can be enforced. Routines have also been added to
compute pressure distribution and the global parameters 1ift
(CL)' drag (Cd) and moment (C‘) coefficients. Also as a part
of this effort an elliptic grid generator has been developed,
which allows the user complete control over all aspects of
the grid generation process. A special wake model handles
the interaction of the trailing edge deflection and the angle
of attack to produce a C-type grid which honors these
conditions.

The code developed in this study is based on the
approximate Navier-Stokes equations in the vorticity, stream
function delta form and has been validated by computing and
comparing three different types of flows: symmetric, low
Reynolds Number (Re=12,500), laminar flow around NACA-12
airfoil, turbulent flow on a finite flat plate (Re=6.5x10°)
and turbulent flow around the nonsymmetric Wortman FX 63-137
airfoil (Re=200,000). Each of these test cases probes one
or more specific areas of the code, which allows a

systematic validation process. The results obtained in each




of the three cases are in very good agreement with previous
data.

Having completed the validation process, flow around
the Wortman airfoil was computed at Re=100,000. Because of
time constraint, one flap deflection of 20 degrees, one slat
deflection of 5 degrees was analyzed at different angles of
attack, in addition to fhe case of no deflection. Results
obtained are compared to previous data [16,26], agreement
with experimental data is good at lower angles of attack,
with under prediction of CL and over prediction of Cd and qn
at higher angles of attack (-4 < a > 8 deg).

Based on the present results, an attempt has been made
to look at the flow structure more closely, which is not
alwayspossible experimentally (the measurement process may
alter the flow pattern and gives rise to un-certainty [7]).
It is hoped that the insight so gained will benefit future
experiments and vehicle designs.

The present system of predicting flow can be improved so
as to allow good prediction capabilities by using different
turbulence models and some minor improvements in the
algorithm. Overall, it can be said that the present code
has good potential of developing into an effective design
tool and this study is only the first step in this direction.

The following chapters discuss at length, details of
the mathematical model, the solution algorithm, the

validation process and the results for the Wortman airfoil,




. finally suggestions have been made to enhance the present
work and specific areas identified in which an in-depth

analysis is required.




. il Analysis

in this chapter, the mathematical model used in this

study will be developed, starting from the fundamental
equations for viscous flow and building up to the model

finally used in finite difference form.

Basic Equations

The fundamental equations governing two-dimensional
incompressible flow of a fluid with no body forces and

constant properties are the Navier Stokes (NS) equations

[20:65].
‘I' . ou ov _
continuity A% + 3y - 0
_ au ou ou _ -1 48P e ) ou 3] ou
X=mom. -a-f + ua—x + V—a7 = ﬁ + 57("&) + a-y-[p-a—y) (1)

P
- v v _ -1 8P _ 9 [ dv a ([ av
yzmom. St UYxtVay T o dy ! ax(“a’] ¥ ay(“37]

It should be noted that equations (1) are in dimensional
form and viscosity has not been assumed constant. This has
been done to facilitate simulation of turbulent flow, using

the concept of eddy viscosity.

Non-dimensionalization

. The above equations (1) can be non-dimensionalized using
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the following normalization definitions.

x x x x
x:x y:y u:u v:v
c c ut V*
© ®
x x x x
Pl es B s Yy o
poud) pm uco ¢
x X
p u.c
Re = ® ®
x
He

where ¢ is the characteristic length (airfoil chord: ¢ = 1)
and subscript © indicates free stream properties.

in the above relations starred (*) variables represent
dimensional quantities and non-starred variables represent
the nondimensional variables. Equations (2) take the

following form after normalization.

aou + ou + vau _ OP + 1 9 Ju + 5] u (3a)
at T Yax T Yay T ax ' “Re ax\Max) t ayl|Yay

v . Bv , @8v _9aP 1 8 (av] , 8 (3 (3¢)
ot X 3y _ dy ' “Re ax|\M3x 3y |Hay ¢

Stream function and Vorticity transport equations

The above non-dimensionalized equations (3) can be cast
into the stream function and vorticity transport equation by
differentiating equation (3b) with respect to y and
differentiating equation (3c) with respect to x. Subtracting

the two resulting equations from each other eliminates the

11




. pressure term, and the rest of the terms can be simplified
using the following definitions for vorticity and stream

function. (for more details, see Appendix A)

.. _ ov ou
(vorticity) W = 3+ 3y (4a)
. _ __ 3
(stream function) u = 5% & v = 5% (4b)

where v is the stream function and v the vortic

The Navier-Stokes equations in vorticity and stream

function form are

(vorticity equation)
wt + "y“x - "x("y = ("""]xx + (uo)) yy

. T APyt PPy * By Pax (5a)
(stream function equation)

t 9 = (5b)

vXX Yy

here subscripts indicate differentiation

In the above set of equations (5), the NS equations in
primitive variables, (3b) & (3c), transform to the vorticity
transport equation (5a). The continuity equation (3a) is
satisfied identically by the definition of stream function
equation (3a). Thus equations (5) represent two unknown
variables w and vy in two equations, forming a closed set,
provided u is known from the turbulence modeling. The
solution of (5) can be obtained by solving them

. simultaneously, or through a procedure, that will be

12
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. discussed in chapter 4 in detail.

Coordinate transformation

The stream function and vorticity transport equations
are in the Cartesian coordinates and therefore can be applied
easily to only rectangular domains. To facilitate
application to irregular boundaries, a transformation is
required that would map the equations and the boundary
conditions from the irregular, physical domain to a body
conformal coordinate system.

The physical domain represents the actual geometry of
the problem and may be of any shape, as shown in Figure 2.
Let x and y be the co-ordinate variables in the physical

. domain and n, £ be the co-ordinate variables in the

computational domain as shown in Figure 2. Then if the

following transformation exists;

E(x,y)
n(x,y)

E
n

The vorticity stream function equations can be
transformed into the computational domain using the chain
rule of partial differentiation. This results in the
co-ordinate transformation relations (25:122-133 ) given in

Appendix B.

Parabolization

. The complete Navier Stokes equations are the most
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(b) Computational Domain

Figure 2 Transformation from physical to computational
domain
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accurate for any flow situation, but these are very
difficult to solve in their complete form. In general, a
very large amount of computer storage and computational time
is necessary to obtain a solution of these equations [2:420].
However for some situations, assumptions may be made that
will reduce these equations to a simpler form. Boundary-layer
(BL) equations and the Approximate Navier Stokes (ANS)
equations fall into that category. Following are some of the
advantages of using the ANS equations [2:420].

(a) .There are fewer terms in the equations, which leads

to reduction in computation.

(b) The equations are parabolic in the streamwise

direction, 8o that their solution can be obtained using

spatial-marching techniques. This result's in

substantial savings of computational time and storage

requirements.

{c) Unlike the boundary-layer equations, which are

singular at the point of separation, the ANS equations

can easily handle reverse flow.

The derivation of the ANS equations from the NS
equations is not as rigorous as the derivation for
Boundary-layer equations. However, the following assumptions
are usually made to arrive at the ANS form of the NS
equations.

(a) The normal pressure gradient term is retained.

15




(b) The second derivatives with respect to the

streamwise direction are omitted.

The assumptions given above have also been applied in
this work, and equations (4) reduce to the following set
(after the transformation into general coordinate system and

application of ANS assumptions).

stream function

e R R R

vorticity transport

EER LR aCIC S
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t!1 Numerical solution

in this chapter, numerical grid generation is
discussed, followed by the numerical method for solving the
vorticity stream function equations, the differencing
scheme, the boundary conditions, the turbulence closure.
The transition from laminar to turbulent flow, the
convergence criterion, computation of pressure and force

coefficients.

Grid Qeneration

As mentioned earlier the purpose of numerical grid
generation is to remove the problem of boundary shape from
finite-difference methods. Numerically generated grids allow
implementation of numerical algorithms on a rectangular
computational domain, regardless of the shape and
configuration of the physical region [25:v].

Numer ical grid generation is not in the scope of this
thesis. But efforts were made to develop a grid generator,
primarily because a grid was required to solve the present
problem. Secondly no available grid generator could handle
the specifics of this study, these being.

(a) The ability to numerically regenerate the surface

of the airfoil so as to simulate leading and trailing

edge deflections.

(b) The grid generator should also be able to handle

17




the combined effect of trailing edge deflections and
angle of attack on the wake branch cut (C-grid).
(c) cCapability to control spacing and clustering of
points anywhere in the physical field and on the

boundaries.

Airfoil Deflections. The solution of problem (a)

involves numerical rotation (transformation) of airfoil
coordinates about rotation centers based upon given
deflection data. A code named "AIRFOIL" was developed
(Fortran listing attached as Appendix C), that takes as input
the airfoil coordinates, lengths/deflections of the leading
and trailing edge devices and regenerates the surface
satisfying the given conditions, Figure 3 represents a
comparison of the basic Wortman section before and after
rotating the leading edge by 15° and trailing edge by 20°
using the program AIRFOIL.

The code Airfoil also has the ability to smooth
coordinate data, so that c? (first derivative) continuity of
the metrics is ensured on the surface. The smoothing of
coordinates is implemented with an IMSL routine that uses
cubic splines and least squares to minimize metric variation.
The addition of smoothing was necessitated for to the
following reasons.

(a) After rotation of the airfoil coordinates some of

the points have to be removed or altered dua to overlap or
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(a) No deflections

N

(b) deflections: Leading edge 15° trailing edge 20°

Figure 3 Comparison of un-deflected and deflected Wortman
. FX63-137 Airfoil

separation. A first cut to this approximation is done as

part of the rotation itself, but this does not ensure c?

continuity, therefore a need arises to apply mathematical
smoothing.

(b) The coordinate of the Wortman FX 63-137 airfoil
obtained from references [16:110] and [5:688], are not c!?
smooth which caused problems with solution convergence and
inaccuracy, and forced unwanted spikes and noise into the
computed data. Thus, smoothing of the airfoil coordinates
was necessary.

Figure 4 shows that smoothing has considerably improved

. the c! variation along the surface (though it could
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Figure 5 Wortman FX63-137 airfoil, before and after

smoothing
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have been better), without significantly changing the
geometry of the airfoil, Figure 5, Appendix D tabulates the
coordinates before and after smoothing..

wWake Profile. The problem of approximating the wake

profile or the branch cut for the C-grid has been solved by
piecing together three polynomials. The first segment is a
sixth-order polynomial, which approximates the start of the
profile based on mean trailing edge deflection and location.
The first patch terminates 0.6c downstream of the trailing
edge, where the final wake angle is enforced. The wake
angle can be either a user input or the angle of attack
(default).

Figure 6 shows a sketch of the wake profile.
Coefficients a through as of the polynomial approximating

this curve are found by applying the following conditions.

(a) x =0 y =0
(b) x =0 g% = Gt. (mean trailing edge slope)
2
(¢) x =0 ay - 0
axz
(d) x = x 9y . o (angle of attack)
1 3x
2
(e) x = X 9 : =0
ox
- oy .
(d) x = x, 3 -
2
(e) x = x, 3 : = 0
Ix

y = ax%+ a x%+ a x*+ a x®+t a x%t a x + a
0 1 2 3 4 5 6
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The second patch is nearly the same as the sixth order
polynomial described above. The only differences being in
the values of X and Xy which are so chosen as to be

optimum for this patch, and would allow y variation without

!

y

Figure 6 Wake Profile

oscillations (characteristic of higher-order polynomials).

This patch picks the slope error at the end of
first patch and blends it down to zero. Thus by the end of
this patch, the profile has acquired the required slope.

The third and final patch linearly extrapoclates the
co-ordinates till the end of the branch cut based on the
slope information provided to it by the second patch.

The overall problem of grid generation (c) poses the
most stringent requirement, and, in the opinion of the
author, is best solved by an elliptic grid generation scheme,
such a scheme has the inherent property of generating very

smooth grids and provides complete control over grid point
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distribution. A core program was thus acquired from L¢t.
Amdhal (AFWAL) [1), that solves esquations (7) to generate a

grid (based on the boundary point spacing).

_ g2
m J (PxE

axXee ~ ZﬂxEn + X + an)

_2
m = "I (Pyg

«Yep ~ ZByEn + Yy + Qyn) (7)

where a, B, vy, J are defined in Appendix B, and P and Q are
terms used to control point spacing in the interior of the
domain.

Because the core program required boundary definition
data to generate grids, a program named "BOUNDARY" was
developed. This program is interactive and allows the user
complete control over point distribution and spacing on all
four boundaries of the C-grid see Figure 7.

This program borrows some stretching and curve fitting
routines from a hyperbolic-grid generator developed by Kinsey
and Barth, AFWAL [13], and employs the Vinokur stretching
function [26] for point distribution and spacing variation.
The hyperbolic-grid generator is based upon the algorithm
developed by Steger and Chaussee [22].

The elliptic-grid generator thus creates grids based on
boundary point and spacing output of the program Boundary.
An example of a grid so generated, is given as Figure 8.

in practice however, it was found that elliptic grid
generation does indeed provide complete control over all
aspects of the grid, but has the serious short-coming of

being computationally expensive . Also, convergence is not
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Figure 8 C-grid created by the Elliptic grid generator
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always ensured and if it does occur it can take a very long
time to converge to an acceptable tolerance. Therefore, the
grids used in this study were generated using a modified
version of the hyperbolic grid generator, described earlier
in this section. The modifications were primarily restricted

to generation of the wake profile.

e

Figure 9 C-grid generated using Hyperbolic grid generator

The advantages of this grid-generation system are that
it is unconditionally stable and produces smooth and nearly
orthogonal grids. Furthermore it is very inexpensive to use
and generates grids interactively in a very short time. The

disadvantage is that very little control is available on
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spacing and distributions of grid lines in the marching
direction (normal to the inner boundary). The theory and
program details of the hyperbolic-grid generation system are
discussed at length in Ref. [13). Figure 9 is an example of

a grid generated hyperbolically.

Numerical method

The vorticity-transport equation, (6a) consists of an

unsteady term L the advective terms y_w_ and whw and

the viscous diffusion term (uu)nn. This :q:ation i: nonlinear
in the advective terms, and must be linearized before any
numer ical algorithm can be applied to it. Furthermore, the
equation is parabolic in time and in the streamwise direction
(), but due to the nonlinearity must be solved iteratively.
On the other hand, the the stream function equation is linear
and elliptic and may be solved using either direct methods or
iterative techniques.

Basically there are two approaches to solve the
vorticity-stream function equations, one is the time
dependent approach (unsteady problem) and the other is the
steady-flow approach (steady state problem) (18:107). 1In
this study, both of these approaches have been incorporated
into the code so that the user may benefit from the
advantages of either scheme. A comparison of the two

approaches follows.

Time-dependent approach. The Poisson equation for
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stream function is iterated to convergence at each time step
of the vorticity-transport equation. The solution is marched
in time, therefore is time accurate. This approach is more
stable numerically than the steady state approach, but is
computationally intensive.

Steady-state approach. In this approach, the stream

function equation is not iterated to convergence at each time
step. Instead both equations are iterated simultaneously,
and, if convergence takes place, steady state can be reached
more quickly than with the time-dependent approach. However,
because the stream function equation is not converged at each
vorticity iteration, a poor initial condition can lead to
non-linear instability (18:107-108).

The pseudo-linearized vorticity equation is given below
along with the stream function equation. These equations are
expressed for a general curvilinear coordinate system and are

in delta (8) form (see Appendix C for derivations).

Sw - - -1 2
JBE gt wpdop T upBey - webupm gl (kee)p),

1
" 90t P * (=51 9)p)y (sa)

(-4 (oo B on)
= - (Ta"e - 'g"’n) ) [_5—"1 ) _g-"ﬁ]- o (8b)
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Discretization

In order to be able to handle arbitrary geometries, a
second-order accurate (in space) conservative differencing
scheme is generated for the stream function equation (8b) by
integrating the equation around a differential element in the

physical domain, see Figure (10).

(L i+ 2.+ 112

§ ¥

i+ 1/2,j-12

i=-12,j- V2

Figure 10 Differential element [11:3]

The resulting system of algebraic equations is solved
iteratively using SLOR (Successive Line Over Relaxation).
For each E-line (constant-i) in the computational domain,
the finite-difference equations at each node can be written

as;[11:3].
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Alawﬁ ‘3-1* 816v1.1+ cjswl.hl

+ D80 + E*w + F%5uw = R* (9a)
j ‘n."’ .' i:.’ .’ 101‘1 j

o (- -]
Alavi.J-1+ 316w1.1+ clawidﬂ

+ D‘;&n‘ + E:&o‘ + F';&.) R® (9b)

-1 J i..Hi: J

where superscript "+" denotes a coefficient of the

stream function equation; o identifies coefficient of the
vorticity equation; ";" indicates the location of the node in
the n-direction, and "&" is the change between two

successive iterations or time levels, given by
vn+‘l=wn+6wn (10)

Thus along each E-1ine a tridiagonal system of equations
is generated from the stream function equation, which can be
solved using the Thomas algorithm until convergence is
reached at each step of the vorticity equation. Note that
the coefficients D; ) EJ' and F; would be zero for the stream
function equation in time-accurate mode).

For the vorticity equation, (8a), central-difference
approximations are used for all terms except for the term
(¢h6we). which is treated as an upwind difference. In the
1imit of the steady state a second order accurate solution is
obtained ref. [11].

Thus, at each node along an E-line, the correction

equations from Newton linearization have the general form
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given by (9). Equations (9) is a set of, a block (2x2)
tridiagonal system of equations, and is solved using the
modified Thomas algorithm (simultaneous solution of (9) in

steady state mode).

Boundary conditions

Since the governing equations remains the same, what
distinguishes one flow field from the other are the boundary
conditions, the initial conditions and of course flow
parameters, such as Reynolds Number (Re).

The specification of boundary conditions not only
affects the numerical stability of a computational scheme,
but also greatly affects the numerical accuracy of the
finite-difference solution. The boundary conditions
therefore take on added significance and must be based upon
physical phenomenon.

In this study, boundary conditions are initially
specified in the physical domain in primitive varijables.
These are then transformed into boundary conditions in terms
of vorticity and stream function for the computational
domain.

Airfoil Ssurface. On this surface, the no-slip boundary

condition is enforced, i.e.,
vz=0 & us=z0 (11)

It can be seen that an arbitrary constant value of the

stream function y satisfies these conditions. In this study,

30




the value is chosen to be zero. Thus, the boundary

conditions on the airfoil surface are.

v=0 wy=0 (12)

As for the vorticity, because of no-slip at the wall,
vorticity is produced on this surface and it is the diffusion
and subsequent advection process, that actually drives the
flow field [18:140].

The vorticity at the wall is computed using the

conditions
240 gﬁ(vn* ") J_j ‘35¢",* 46wx,2- avx,az 0 (12)
v=0 (13)
and the recurrence relations
awj = R1jawj_1 + 511801_‘ + T1J (14)
801 = szawj_i + 821601_1 + T2J (15)

Algebraic manipulation of equations (12) to (15) results
in the following relation for the change in vorticity on the
airfoil surface.

R1_- 4]T1_ + S1.T2_ + T1_ - 2ay
&0 - [ 3 ] 2 $ 3 2 3 n (16)
[4 - R1_]S1_ - S1_S2
3 2 3 2

Outer boundary. On this surface (Figure 7, surface no

3), the free-stream conditions due to velocity are enforced

U = Ccosa
—_—




U = cosa and v = sina (17)

where the non-dimensional free stream velocity has unity
value and 'a’ is the angle of attack.

Applying the chain rule of partial differentiation

results in the following condition.

g% = g% cosa - g% sina (18)
This is the Neumann form of boundary condition, and the
Dirichlet form can be obtained by integrating relation (18),

which results in
Y = y cosa - x sina + v, (19)

where v, is the arbitrary constant of integration and in this
case has already been set to zero (airfoil surface y = 0,
equation 13).

Outflow boundary. On this surface (Figure 7, surfaces

2 and 4), the free stream conditions given by equations (17)
have also been enforced, which results in the following

Neumann form.

?E = g% cosa - g% sina (20)
The corresponding Dirichlet condition is
¥ = ycosa - xsina+ g (21)

where » = 0
In this study both the Neumann as well as the Dirichlet
type of boundary conditions have been incorporated in the

source code, either of which can be selected by the user,
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for any surface (outer or outflow). Based on the author's
experience with the code, it was been found that the Neumann
condition works better on the outflow boundary, especially
when nonsymmetric flow is being computed. On the outer
boundary, the Dirichlet condition works very well and helps
accelerate convergence, with greater stability than the
Neumann condition. This was found to be especially true at
high angles of attack, when application of the Neumann
conditioq can lead to oscillations and divergent behavior.

It must also be emphasized that each problem poses a
different requirement and it is not necessary that one type
of boundary condition will work best under all conditions.
Thus advantage of the codes flexibility can be taken a. 1
different boundary conditions tested,to determine the optimal
set for the problem being considered.

wake (branch cut). Implementation of a boundary

condition on the branch cut poses a very special problem,
especially for non-symmetric flows, as values of y and w at
the cut have to be computed. The situition is further
complicated by the fact that at the branch cut (C-grid), a
discontinuity of the curvilinear coordinates exist (reversal
of directions). Continuity can be maintained, however, by
conceptually remaining on the same overlapping sheet as the
cut is crossed. All derivatives thus do exist at the cut,
but careful attention in difference formulations is necessary

to represent derivatives correctly across the cut [25:70].
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The unknowns y and w are computed on the branch cut
by solving the following system of equations along

E-direction (j=1).

s . . ° s s - n®
Alwl-ll’ Blwi* Clwloi"’ Dl&dl-i+ Ei&"l+ Fl&olo‘l- Rl (21)

° + R® + C° o o ° = p°®
Ai&pi-l Btwi clwlol+ D!&oi-1+ El&oi* Fl&"lo‘l Rl (22)

where superscript 's' denotes a coefficient of the stream
function equation and 's' denotes a coefficient of the
vorticity equation.

.It should be noted here that the coefficients in
equation (21) and (22) are not computed in the same manner as
for rest of the domain. Instead a special finite-difference
formulation is employed to enable handling of the branch cut
discontinuity, as discussed in the paragraphs above. Also,
the system of equations is collated by marching along the
constant n-line (j=1) in the E-direction. This results in a
block [2x2] tridiagonal system, that is solved by using the
modified Thomas algorithm. Thus, evaluation of v and o
represents a two point boundary value or elliptic problem.
That must be solved at each iteration level, based on the
known boundary conditions at either end of the branch cut.
That is, at the trailing edge, the boundary condition given
by equation (11) is enforced and at the other end, the
boundary condition given by either equations (20) or (21) is

emp loyed.
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Initial conditions

For unsteady flow solutions the proper initial
conditions are critical. However, for situations in which
only the steady state solution is sought, the accuracy of
initial conditions takes on a slightly lesser significance,
as the (theoretically) steady state can be achieved without
any regard to the initial conditions. But, due to the
non-linearity of the problem, it is necessary that the
initial conditions be not too far from the physics. Under
certain conditions improper initial conditions may lead to
solutions, which may not have any physical significance and
resemblance to the actual solution.

In this study a second order velocity profile in terms
of stream function is initialized in the viscous region above
the airfoil surface. In the inviscid region, the stream
function takes on a distribution based upon the free stream
velocity. The vorticity is assumed zero every where in the

viscid as well as the inviscid regions.

Turbulence modeling

The influence of turbulence is modeled by means of an

eddy viscosity ¢, leading to the total or effective viscosity

M= H+ pe (23)

where u is the molecular viscosity.

The eddy viscosity is computed from the zero equation or

algebraic model of Baldwin and Lomax [4:2]. The Baldwin and
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Lomax model is patterned after the Cebeci and Smith model
[10], which is difficult to use, because of the necessity
of determining the displacement thickness. The Baldwin-Lomax
model overcomes this short-coming and uses the distribution
of vorticity to determine the length scale in the outer
region of the shear layer. Vorticity is also used in the
inner region, this is beneficial as vorticity is the natural
output of the present algorithm. Interested readers are
referred to [15:6] for an interesting discussion on
shortcomings of Baldwin-Lomax model and how these can be
overcome.

Details of the Baldwin-Lomax model are discussed at
length in references [4:2] and [15:6], therefore these will
not be repeated here.

The routine employed in the computation of eddy
viscosity is basically developed by Visbal [27] and has been
modified to suit the present study. Also a transition model
has been added to account for eddy viscosity variation, along
the streamwise direction in a gradual manner rather then the

abrupt change proposed by Baldwin and Lomax [4:2].

Transition model

Flow transition from laminar to turbulent is a very
complex phenomenon, for which very little understanding
currently exists. The situation is compounded by the complex

interaction of many factors, such as free stream turbulence,
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surface roughness, pressure and thermal gradients, to name
only a few. Hence prediction of transition relies very
heavily on experimental data and empirical formulations. One
such relation is due to Michel! and is known as the Michel's
correlation method [15:6].

R, = 1.174[1 +

22,000 1,.°%-¢
) ]R

. (24)

X

where subscripts 6 and x identify the Reynolds Number based
upon momentum thickness and surface distance respectively.

The relation above is known as the Michel's correlation
formula, and is often used to predict location of
transition. This empirical formula is sometimes coupled with
the location of laminar separation and transition is assumed
to occur at either the point of laminar separation or where
ever(24) is satisfied, which ever comes first. 1t should be
pointed out that Michel's method is not vaiid for flows with
separation [15:8].

In this study, the transition location has been picked
based on the criterion, presented below in the order of
preference.

(a) Experimental data, if available.

(b) Extrapolation of related experimental data reported

by Bastedo [5] and Williams [28] and correlation with

location of laminar separation.

(¢c) Location of laminar separation.
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Having located the point of transition the process of
transition from laminar to turbulent is simulated using the

Cebeci-Smith model of transition [15:6,10), which is given

by;
X
- 1. _ _ dx
1, ° 1 exp[ Q(x xtzj T ] (25)
X [ ]
tr
2 3
Re Ue _
where a ='-_TTUULL (Re U.trxtr) 1.34 (26)

where subscript +r+ designates values at the beginning of
transition and 1tris the transition factor.

Pressure and force computation

The advantage of working with vorticity """, Stream
Function "y" formulation is that the number of unknown
variables reduces, as the pressure term is eliminated from
the primitive momentum equaticn (see Appendix A for details).
Once w and ¢y have been computed, the pressure solution can
be extracted from these known variables by integrating the
following Poisson equation for Pressure (for derivations, see
Appendix F).

Equation (27) is the Poisson equation for pressure and

is in general curvilinear coordinates. The only unknown

variable is the pressure “P" and the right hand of this

38




n
+ (xE Hn™ Xp "E){(_%-VE - —g—vn)E + [ Vo " _%-VE)n}
+ (yn Mg~ Yg un){(—%—ue - —%—un)E + [ JYn -%-UE);}
+ (Vn UE' ye un){(_%;uﬁ - —%;uﬂ)g * ( J."n ] _%;uE)n}

+
——
+
N
~~
x
m
|
'
x
[ =
m
e’
——
—t—
—
e
~
x
™
=
-
'
x
P |
=
o™
—
—
3]

- [_;i(xe un - xn ue)]n} (27)

equation is known from the w, y solution. This equation is
descritized using central differences and the following

equation is obtained at each node point.

aP +bpP + cP = d
J 3-1 J 3 J 141 J (28)

Solution along each constant "n” line is obtained
implicitly using Thomas algorithm and is advanced from one
level to the next using SLOR, till convergence to a required

tolerance is achieved.

Boundary Conditions for Pressure. The boundary

conditions used for the Poisson pressure equation (27) are
mixed, as on the outer boundary, the Dirichlet boundary
condition P = 0 is employed, the Neumann boundary
condition o6P/an = 0 1s enforced on the airfoil surface and

dP/3E = 0 is enforced on the outflow boundary. On the
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’ branch-cut (je1), the pressure is approximated by averaging
the value above and below this constant n line.

It would be appropriate to point out that at each
node if P"j+ C is the solution obtained by integrating
equation 3.27 (C is the constant of integration), then the
level of F’i'j can be chosen by specifying the value of P at
any point in the domain. In this study, the value of P so
chosen is zero and is specified at the outer boundary. This
approach facilitates the computation of the coefficient of
pressure CP , which is simply given by CP = 2P . Thus the
variable P physically represents

P*~ P,

x

P =
Uaz

® .

where """ represents dimensional variables and "o" free
stream properties.

Having found the pressure and skin friction distribution
(see Appendix G) on the airfoil surface, the force and
moment coefficients can be computed using the following

relations, the details on usage and derivation are given in

Appendix Q.
N-1
CL = f§1{ Asi(clisin(ei-a) - CPicos(ei-a))}
N-1
Cq * iga{ “i(ccf°°’(9f'“) + CPisin(ei-c))} (29)

u-1
€, = L {ri A'i(cPiCO'(9i+ 6.) - cli'i"(ei- 6.)]}

. c/4 fe1
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where Ct is the 1ift coefficient, Cd is the drag coefficient

and q. is the moment coefficient at the gquarter chord.
c/4

The other variables are defined in Appendix Q

Convergence Criterion

There are three types of converged solutions in
numerical simulations, steady-state, periodic and unsteady.
Even though no solution is perfectly steady, there is always
some oscillation. The unsteady behavior may be so small as
to be negligible. When this is the case the solution can be
said to have reached a steady-state. The steady-state
solution is the easiest to resolve, and is characterized by
the uniform convergence of some criteria after an initial
transition period [6].

The criterion for convergence for this study were the
coefficients of 1ift (CL) and drag (Cd). When the variations
in Cy and CL are less than 0.1% over 2000 iterations, then

the solution is considered to have converged to a steady

state.
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IV Results and Discussion

In this chapter the Numerical results obtained from the
ANS code are presented. The verification of the code and
grids is presented first, which considers three cases, for
testing and evaluating various aspects of the code. This is
followed by the results for the Wortman Airfoil and

comparison with experimental data.

Code Verification

Before the Wortman FX 63-137 airfoil can be effectively
analyzed, it is necessary to ensure that the code and its
segments are working correctly and are predicting the flow
field accurately. This has been done by considering three
cases under different flow conditions and comparing the
results so obtained.

Case-1: Laminar Flow (Re = 12,500). The first case

considered is the symmetric NACA-12 airfoil in laminar flow
at Reynolds Number of 12,500.

The grid used to study this case was symmetric and had
outer boundaries located 20 chord lengths from the airfoil
surface. The grid had 200 symmetrically placed grid points
on the airfoil's surface, spacing in E-direction at the
leading edge was 0.001 and at the trailing edge 0.008. 40

points were distributed on the wake profile, and in the
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n-direction 60 points with minimum wall spacing of 0.0001.

The grid so obtained is shown in Figure 11.

NACA 0012
\?.\-Q\ ‘ \\‘ ":'_Mf..::nr‘“ -
O = = ===
N 00-{—¢ +
- Feyigtfsg
3t == =
[ ' T !
> LTI
il s T
A T 1
Z e LT T
- Y1y o I
/'/// il //// ,// // J” I ' 1 L
i, ! \
10 7 ) //7% //"’/: II: u{rlu]\l.”-”r { ‘ \ \
—.l 0 d.U 20
X/C

Figure 11 Q@rid for NACA-12 airfoil

The ANS code was executed for this case and convergence
was achieved in only 9000 iterations, which took
approximately 900 CPU seconds to execute on the Cray XMP.
Figure 11 is a comparison of chord-wise skin friction
distribution obtained using this code and the results
obtained by Halim [11], The streamline contours have been
plotted in Figure 13a and these can be compared to contours
from reference [11] in Figure 13b, it can be seen that

agreement so far is very good. This is further
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Figure 12 Comparison of skin friction coefficient
distribution, present with Ref. [11].

substantiated by the fact that laminar separation was
observed at x/c = 0.818, where the location reported by
Halim [11] ie x/c = 0.8178. Swanson and Turkel [23] solved
the Navier-Stokes equations on a C-type grid for this airfoil
and Reyrolds number and the obtained laminar separation at
x/c = 0.817. Based on the above given results, it can be
concluded that the code does give excellent results for low
Reynolds number laminar flow.

Case-2: Turbulent Flow (Re = 6.5x10°). This test case

has been designed to check the accuracy of the turbulence and

transition model, and the ability of the code to handle
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(b) Ref. [ 11]

Figure 13 Comparison of constant stream function contours
NACA-12 airfoil, Re = 12,500
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flows at high Reynolds Number.

The geometry considered is the flat plate at Re=6.5x105.
this value of Re has been chosen as turbulent flow under
these conditions is ensured [20]). The flat plate has been
chosen so that the geometry of the body does not complicate

the analysis of the resulcs.

FINITE FLAT PLATE

1.0

Y/C

0.0
~05 0.0 05 1.0 15
X/C

Figure 14 G@Grid used for Flat Plate

To allow flat plate computation, the code was slightly
modified so that a H-type grid may be used (metrics
singularity at the leading edge does not allow use of a

C-type grid). The grid spacings used were the same as for
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case-1, and Figure 14 is a portion of the grid finally used
to compute flow.

To compare this test case with known and proven data,
the boundary layer solver (developed by Cebeci & Smith) Ref.
[9] was executed for Mach number of 0.001 and standard
atmosphere free stream properties. This code solves the
boundary layer equations on the infinite flat plate,
advancing the solution parabolically in the streamwise
direction, till the required Reynolds number is reached. 1In
this case a constant step size Ax = 0.02 was used and
transition to turbulent flow was triggered at Rx = 3.2x105
120).

The ANS code was also executed based on the above given
transition criterion, the differences being the grid
spacings and the Mach number, which was zero as the code is
limited to incompressible flow only. The results so obtained
are compared in Figures 15 through 17 and discussed below.

Figure 15 compares the skin friction distribution
obtained from the two codes, and it can be seen that the
results do compare favorably. Small deviation around x/c =
0.6 can be attributed to the differences in the transition
location as it may not locate exactly at the same place due
to non-presence of an appropriate node point.

Figure 16 compares the velocity profile close to the
trailing edge (x/c = 0.98), with that obtained from ref.

[9], ¢the two profiles agree very nicely and the variations,
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though very small are within the tolerance (£5%).

The third and final plet for this case is Figure 17,
this graph compares the Eddy Viscosity (¢) distribution
obtained from the two codes. |t can be seen that the
Original Baldwin-Lomax model [4] predicts greater magnitude
of ¢ in the outer region and also the distribution of the
Klebanoff intermittency factor is slightly different, which
causes the ¢ profile to be somewhat different from the one
obtained using Cebeci-Smith model. Because the Baldwin-Lomax
model is pased on the Cebeci-Smith model therefore it is
expected the later should predict the same ¢ distribution.
On order to achieve this result the Baldwin Lomax model was
modified with slightly different constants, given in Table
1. The constants Ccp is a scaling factor for the outer

region and CIl is the scaling factor for computing the

leb
Klebancff intermittency factor.

Figure 17 reveals that after modification the models do
predict the same ¢ distribution. it should be noted that the
constants used in this case are applicable to only this
geometry and Reynolds number. A more general modification
however, is proposed by Visbal and Knight [27] and York [29],
the values of the constants for the outer model suggested by
them are given in table 1.

The constants, used in this study, however, are the

ones given by Baldwin-Lomax ref. [4], as use of any other

values would have required a much more in-depth analysis, of




Table 1 Comparison of constants: modified and un-modified
Baldwin-Lomax Model

Symbo Original| Present(modified) |Ref.[27](modified)

c 1.6 1.33 1.2
cp

0.3 0.39 0.646

c
kleb

the models under different conditions, which is definitely
not within the scope of this study.

Case-3: Non-Symmetric Turbulent Flow (Re = 200,000).

The third.-and final test case is the comparison of pressure
distribution for Wortman FX €3-137 airfoil at an angle of
attack of 1° and Re = 200,000.

The grid used used to study this case had grid spacing
and point distribution exactly the same as for case-1, the
grid however so obtained was non-symmetric due the
characteristic high camber of Wortman airfoil.

Figure 18 compares present pressure distribution with
data from Ref. [5]. Agreement between the two is very good
and variations are within experimental tolerances.

Results

The results obtained for the Wortman FX 63-137 airfoil
will now be presented, these were obtained using the ANS
code developed in this study, wherein the original
Baldwin-Lomax model! has been used and the surface of the
airfoil has been made mathematically smooth, using the

program “"Airfoil"” (Appendix C).
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The grids used to compute the different cases were all
different from each other primarily in the wake region. As
the wake profile (branch cut) had to honor the trailing edge
deflection and the airfoil angle of attack, it is therefore
not possible to show here each and every grid used in this
study. However, Figure 19 is an example of a typical grid
and Figure 20 shows the grid details of the leading as well
as the trailing edge. The grid point distribution and
spacings for all grids were exactly the same as defined for
case-1 (NACA-12, Re=12,500).

wWortman airfoil, No deflections. Flow for this case was

computed for 6 different angles of attack ie. -4,0,4,8,12 and
16 degrees. The constant stream function, velocity and
vorticity contour plots for these cases are attached in
Appendix H as Figures 36 through 51. The corresponding
pressure coefficient and skin friction distribution are
attached in Appendix | as Figures 52 through 67. The
performance parameters; l1ift coefficient (CL)’ Drag
coefficient (Cd) and moment coefficient (qn) are plotted
against angle of attack in Figures 21, 22 and 23
respactively.

= 5°, 6§ = 0°. Flow for this case

le te

wortman airfoil, §

was comp.'-ed for 5 different angles of attack ie. -4,0,4,8
and 12 degrees. The constant stream function, velocity and
vorticity contour plots for these cases are attached in

Appendix H as Figures 42 through 46. The corresponding
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pressure coefficient and skin friction distribution are
attached in Appendix | as Figures 58 through 61. The
performance parameters; lift coefficient (CL), Drag
coefficient (Cd) and moment coefficient (C.) are plotted
against angle of attack in Figures 24, 25 and 26

respectively.

1.0

SRR U R
v T e T T
o ' PR 11 M TR A [
; ’ ! ’; Y “hl Vo ot
. —— (”!\‘j."_ . o !
ks . RN R RS !
i

0.5 1.0 1

Figure 19 279x60 grid wortman FX 63-137 airfoi)
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Figure 20 Qrid detail wortman FX 63-137 airfoil
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Wortman airfoil, 8 .2 5°, 8,2 20°. Flow for this case

was computed for 5 different angles of attack ie. -4,0,4,8
and 12 degrees. The stream function, velocity and vorticity
contour plots for these cases are attached in Appendix H as
Figures 46 through 51. The corresponding pressure
coefficient and skin friction distribution are attached in
Appendix | as Figures 62 through 66. The performance
parameters; l1ift coefficient (CL)’ Drag coefficient (Cd) and
moment coefficient (c“) are plotted against angle of attack
in Figures 27, 28 and 29 respectively.

Effect of Angle of Attack

On Lift Coefficient. The effect of angle of attack on

the 1ift coefficient can be observed from Figures 21, 24 and

27. For all cases the lift curve (Ct ) has a positive slope,
[+

implying a 1ift coefficient increase as the angle of attack
is increased. |t can be also observed that the lift curve
slope remains essentially constant, however in Figure 21 the
value of C, obtained for a=16° is less than the value
predicted by the l1ift curve slope, this shows that the
airfoil is approaching the stall condition and any further
increase in a will trigger stall and would cause a
significant drop in 1ift. The actual stall case could not be
computed due to time limitation.

Comparison with experimental results is also made in
Figures 21, 24 and 27, the present 1ift compare well with

Perry [16] for a = -4, 0 and 4 degrees. For greater angles
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of attack the disparity is larger and is more than the

acceptable limits. Figure 21 also cnmpares the present data
with data reported by Williams [28] for the no deflections
case and various Reynolds numbers. |t cari be seen that this
data is also significantly different from Ref [16]. For Ref.
[b28] the 1ift curve slope is greater, however in the
present case, the 1ift curve slope is lower than Perry [16].
Another point to note is that airfoil stalls at quite
different values of o for Ref. [16] and Ref [28)] (The present
results reflect the uncertain data scattering of experimental
measurements, at low Reynolds conditions).

On Drag Coefficient. The drag coefficient has been

plotted as a function of angle of attack in Figures 22, 25
and 28, The drag distribution is not linear , but is closer
to parabolic. Because of the limited o« range considered the
variation of cd beyond the tested values cannot be predicted.
In comparison to the other cases, the data set corresponding
to leading edge deflection of 5° is the closest to the data
reported by Perry. For all cases the variance between
present and Perry is greatest at higher angles of attack, in
comparison to values of a close to zero, where the agreement
is very good. Figure 22 also compares Cd variation with Ref.
[28] the values reported are an order of magnitude lower than
those reported by Perrv. In fact the magnitude difference in

measurements between [16] and [28] is similar to the

disparity between present calculations and data of Ref.[16].

67




On Moment Coefficient. Positive pitching moment is

defined in this study as one, which causes a nose down
motion of the airfoil. 1In all the cases considered the
variation of moment coefficient with a is almost linear.

This can be clearly seen in Figures 23, 26 and 29, along
with the fact that agreement with experimental data is pretty
good within the a = + 4 degree range. For higher values of
angle of attack, that is 8 and 12 degrees, no agreement
between data and calculations is reached. Similar to the the
drag and 1ift coefficients, the case with leading edge
deflected of 5 degrees is closest to experimental data, 1in
comparison with the other two cases. The attention should
also be focused on the fact that the data from Ref. [28] is
quite different than Ref. [16]. The significant discrepancy
in experimental measurements and betweer. numerical simulation
suggest a continuous research effort in this area are still
required.

On Pressure Peak. Close examination of the C_. plots

P
Figures 52 through 67 shows that at smaller angles of attack,

it is very hard to pick out the location at which minimum

pressure occurs as the C_ variation is quite flat. However,

P
as the angle of attack is increased the point of min.
pressure becomes more and more distinct and moves upstream,

towards the leading edge.
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Table 2 Comparison of separation and reattachment points

Wortman FX 63-137 airfoil, 8§ =68 =
te le
(a) Lower surface
Bastedo Williamg
«® Present Re=2x10° Re=Tx10
Ref. [5] Ref. [28]
-4 0.75 =+ x ——— 0.63 - 0.78
0 0.60 < x 0.59 - 0.82] 0.52 - 0.70
4 0.65 - 0.72| 0.48 -5 0.72] 0.47 - 0.64
0.95 o x
8 0.49 5 x 0.31 5 0.60| 0.40 - x
12 0.43 5 0.51 ———— 0.11 » 0.16
0.60 - x 0.75 = x
16 0.17 - 0.36 ———— 0.05 - 0.12
0.38 o 0.47 0.50 - x
0.48 9 x
(b) Lower surface
Bastedo5 w1111am§
a® Present Re=2x10 Re=7x10
Ref. [5] Ref. [28]
-4 0.46 - 0.68] 0.05 » 0.08| 0.05 -+ 0.08
0.82 - 0.91
0 0.32 - 0.81] 0.38 -+ 0.52] 0.40 - 0.49
4 0.66 - 0.67] 0.48 » 0.68] 0.48 -+ 0.52
0.95 -+ 0.99
8 0.53 5 0.76] 0.60 - 0.78]| 0.62 » 0.68
12 NIL NIL NIL
16 NIL NIL NIL
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The same deductions can be arrived at by observing the
constant velocity contour plots, given in Figures 36 through
51, where it can be seen that as the angle of attack is
increased, the point of minimum pressure, which is also the
point of maximum velocity moves towards the leading edge.

A point to note in Figures 59 through 67 is that the
pressure coefficient shows a small spike of same magnitude
and i3 located at the same place (x/c = 0.13) for all cases,
with slat deflection. This spike has been generated due the
slat deflection, and can be removed by smoothing the metric
discontinuity at this point on the airfoil.

On Laminar Separation. The point of laminar flow

separation is defined by the location of the vanishing skin
friction coefficient. The relation of the point of
separation with angle of attack can be observed from the
stream line plots given in Figures 36 through 51. The exact
location of the separation point can be found from the skin
friction distribution, which is plotted as a function of
chord in Figures 52 through 67. Note that at the point of
separation the values of the stream function as well as the
vorticity are zero.

From the stream function contours it can be very easily
observed that as angle of attack is increased, the point of
separation on the upper surface moves upstream towards the
leading edge and the separation bubble becomes bigger in

length and height. On the lower surface however, the point
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of separation moves downstream and the separation bubble
becomes smaller and smaller in length till it completely
vanishes. The fore mentioned phenomenon can be explained by
the fact that on the upper surface the adverse pressure
gradient becomes stronger as o is increased, which triggers
earlier separation. On the lower surface, the opposite
takes place as flow on this side has greater momentum which
helps to overcome the adverse gradient causing the point of
separation to move downstream. This trend is most evident
from the data presented in Tables 2 through 4 . These tables
compare the values of separation and reattachment for the
present study, with flow visualization results of previous
exper iments, wherever available (a x identifies no

reattachment).

Table 3 Comparison of separation and reattachment points

Wortman FX 63-137 airfoil 6 =5°, § =0°
le te

Perry
o Present Re=1x10
« Ref. [16]
Lower surf.| Upper surf.| Upper surf.
-4 0.24 - 0.38] 0.75 -» 0.79} =-=----
0 0.40 - 0.59] 0.58 -» 0.99] -----
4 0.53 - 0.71| 0.64 » 0.71] 0.55 2 0.75
8 0.49 5 x 0.43 - 0.71| 0.40 - 0.60
12 0.43 - 0.71| 0.35 - 0.54| 0.20 - 0.30
0.85 =+ x
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Table 4 Comparison of separation and reattachment points

Wortman FX 63-137 airfoil 5“=5°, a“=2o°

Perry
o® Present Re=1x10
Ref. [16]
Lower surf.| Upper surf.| Upper surf.
-4 0.01 - 0.10y 0.53 =» 0.91] -----
0 0.37 - 0.75{ 0.57 -» 0.90} -----
0.21 - 0.73
4 0.36 - 0.74] 0.49 - 0.84| 0.60 = 0.70
'8 0.36 - 0.82} 0.27 - 0.51} 0.35 - 0.60
0.66 - 0.96] 0.75 = x
12 0.44 - 0.77}f 0.41 - 0.78} 0.20 - 0.30
0.83 » 0.91] 0.75 = x

Effect of Slat Deflection

The slat constitutes 13% of the chord and in this case
has been deflected by an angle of 5 degrees. Downward
deflection of slat is defined positive.

Oon l1ift coefficient. The effect can be best evaluated

by observing Figure 30, which is the comparison of 1lift
curve slopes for the three different cases. Comparing the
case of no slat deflection with the case of 5 degree
deflection, it can be seen that at small angles of attack
1ift coefficient for the Wortman Airfoil with slat deflection
is slightly less then compared to the no deflection case.

However, at higher angles of attack, the opposite is true.
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The above observations have also been reported by Perry
[16], who points out that at deflection of slats increases
the value of the critical angle (angle at which an abrupt
change of parameters takes place; stall).

These observations can be best explained by the
following; at lower angles of attack and slat deflection ,
the effective angle of attack seen by the airfoil leading
edge decreases, causing reduction of the pressure peak and
it's movement downstream. The net results is a reduction in
1ift. At higher angles of attack, however, downstream
movement of the point of minimum pressure delays laminar
separation and hence stall, this improves airfoil

performance and increases the critical angle.

1.5

) I U U S N I I O O |

Cl 1.0

00000 §,,=0°, §,=0°
8566 §, =, b.,.=.

8888 6,.=5°' 6:=20°

D0
[TTTTTTTITT 7TV T T T TV.V rrrrrrrrrTryrrrrrrrryryrryrvrrrvrrrerg

-20.00 -10.00 0.90 10.00 o 20.00 30.00
a
-0.5

Figure 30 Effact cf slat and flap deflections on lift
coefficient
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On Drag Coefficient. The effect of slat deflection on

the drag coefficient is made obvious by comparing the case of
no deflection, with the case of 5 degree slat deflection in
Figure 1. Almost no change in ¢4 occurs due to the slat
deflection. Perry [16] also reports a similar finding, for
the angle of attack range considered. The effect of slat
deflections of 10 degrees and greater is felt only when the

angle of attack is greater than 16 degrees and less than -8

degrees.

0.7

0.6 Q60090 5,.:0‘3, 6= °
GEEEE (5,;;-:;‘ = .
sttt §,.=5 §,=20

0.5

[lllllll!‘]llIll'ﬁ-GT]IYIIIIITTIIIIlllll]'llllllITT‘]
-20.00 -10.00 0.00 10.00 20.00 30.00
a.

Figure 31 Effect of slat and flap deflections on drag
coefficient
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On Moment Coefficient. For the leading edge deflection

of 5 degrees, the effect on moment coefficient is
negligible. This can be observed from Figure 32, where the
moment coefficient for the deflected case is compared to the
un-deflected case. Perry [16] also reports a similar finding
for the deflection angle and angle of attack range, being

considered here.

0.4

0.3 00000 6h=0°p 6-=0°

eee88 §,=5°, §,=0°

0.2 % Cm amats §,=5°, 6,,=20°

0.1

a’

H-H
AR ERARERERARBRRERERERRAL AR ERERERERREREREEREREREER R EN

—-20.00 -10.00 0 10.00 20.00 30.00

Figure 32 Effect of slat and flap deflections on moment
coefficient

On Pressure Peak. Comparison of the pressure

coefficient plots for the undeflected case in Figures 52

through 54 with the slat deflected case in Figures 55 through
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57 shows very small localized changes in the leading edge

zone. The observation is anticipated, that is, slat
deflection causes the point of minimum pressure to move down
stream and reduces the pressure peak. For all the cases with
slat deflection, a spike in CP distribution to appears at the
slat rotation point. This anomaly is induced by the metric
discontinuity at that point on the upper surface. This minor
discrepancy can be eliminated by smoothing the upper surface
at that point.

On Separation Point. Effect of the slat deflection on

the separation points can be evaluated by comparing the
separation points given in Table 3 for slat deflection with
separation point data given in Table 2 for the un-deflected
case. There is negligible change in the location of the
separation point. This, however, would not be true for lairga

slat deflections.

Effect of Flap Deflection

The Flap constitutes 25% of the chord and in this case
has been deflected by an angle of 20 degrees. The downward
deflection of the flap has been defined positive.

On Lift Coefficient. There is a significant increase in

the 1ift coefficient due to flap deflection, depicted in
Figure 30. The complete 1ift curve slope has been shifted
upwards, this is the usual characteristic of flap

deflection. Due to non-linearity and viscous effects, there
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has been a very slight change in the 1ift curve slope also.
The flap deflection has increased the slope by a very small
value. 1t can be predicted that further increase in flap
deflection angle will cause more shift of the curve in the
same direction.

This increase in the 1ift coefficient can be explained
by the constant stream function, vorticity contour plots
(Figure 47 - 51) and the coefficient of pressure graphs
(Figure 63 - 76). Due to flap deflection, the pressure
distribution has been drastically changed. In the flap
regior a large suction exists on the upper surface, on the
Jower sur®ace positive pressure has been also increased.
This combined effect has been created due to the counter
rotating flow occupying the void left by the deflected flap.
This counter rotating flow can be observed in Figure 33,
which shows the velocity vector plots for two of the flap
deflected cases. This counter rotating vorticity strengthens
the circulation around the airfoil, which increases the
airfoil 1ift.

On Drag Coefficient. The change in drag coefficient due

to flap deflection is presented in Figure 31. The complete
curve has been shifted up by a certain constant value. The
viscous effects and the non-linearities associated with this
flow field have caused a slight change in the drag
distribution.

Most of the increase in drag is due to the pressure

17




125

100

J A

1.25

ll 0n

2

1

(b)

wortman airfoil

ctor plots,
20°

e 33 Velocity ve
5§ =5°, 86 =
le e

Figur

78




differential (explained above), acting on the flap surface,
with flap deflected, the wetted area (effective
crossectional area seen by the free stream) has also
increased, which also contributes to an increase in drag.

On Moment Coefficient. The same phenomenon occurs for

the moment coefficient as has been observed for the above two
cases. Figure 32 shows that the moment coefficient curve has
been shifted by a certain factor, with a small change in
slope.

The increase of moment coefficient can be explained
again as being the result of the large pressure differential
acting on the airfoil surface, specifically in the flap
region (the complete pressure distribution around the airfoil
changes, to accommodate the increase in circulation). Due to
the long moment arm, even a small change in the pressure
distribution in the trailing edge zone result in significant
changes in the moment coefficient.

On pressure peak. Comparing the pressure distributions

of the flap deflected (Figures 64 - €7), with the
un-deflected case (Figures 58 - 63) for all angles of attack,
the trend is moving the point of minimum pressure towards the
leading edge. A considerable increase in adverse pressure
gradient on the upper surface and corresponding pressure rise
on the lower surface are also detected.

On Separation Point. Due to the forward movement of the

point of minimum pressure and the increase in adverse
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pressure gradient acting on the upper surface, the point of
separation occurs much closer to the leading edge. This can
be observed from the constant stream function contours
(Figures 47 - 51) and comparison of separation data given in
Table 4 with separation data given in Tables 2 and 3. From
the stream function and vorticity contours, note that as the
angle of attack increases with flap deflection, the region
of separated flow becomes larger with point of separation
further upstream. As flap deflection or angle of attack is
increased? the separation will become larger and will

subsequently cause stall of the airfoil.
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V Conclusions And Recommendations

The results obtained using the ANS code developed in
this study compared favorably with experimental data for
small angles of attack. For larger angles, the agreement
needs improvement. However based on the codes performance,
it can be said that the solutions obtained are still good
approximation of the physical problem. It has also been
observed that experimental data also varies from source to
source and the discrepancies are comparable in magnitude, in
comparison with numerical results obtained using the ANS
equations.

The results indicate that deflection of the flaps causes
earlier separation of the boundary layer and slat deflection
tends to negate this effect. Because only a limited number
of cases were computed, no optimization studies could be
carried out.

Convergence characteristics of the solution is
reasonable for the Reynolds number considered here, however,
the code does have a Reynolds number limitation. No studies
were carried out to find that 1imiting value, as it would
vary from problem to problem. The code also exhibited some
sensitivity to the initial conditions, improper
initialization of the flow field causes delayed convergence

in 1imit cases. This is because of the fact that the stream
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function and vorticity equations are being solved in a
coupled manner. The problem can be eliminated if the stream
function equation is solved using direct methods at each time
or iteration level. The recommended procedure may alleviate
the sensitivity to initial conditions for convergence. It is
also recommended that the ADI scheme may be used in
conjunction with artificial damping, which will ultimately
allow reduction in the Reynolds Number limitation and will
also improve rate of convergence. It is also recommended
that Baldwin-Lomax model be evaluated together with the
Cebeci Smith model for turbulence for the investigated cases.
1t is felt that the large disparity at higher angles of
attack is induced by the turbulence model to effectively
handle the massive separations encountered in this study.
Finally it can be concluded that the ANS code holds good
promise and refinements in the designated areas will allow

its development into a good design tool.
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. APPENDIX A : Derivation of stream function and vorticity

transport equations

The non-dimensionalized Navier Stokes equations are

Ju + v

3x 37 =0 (30)
au u du _ QdP 1 &8 u 8 u
5{"“5;*"5;-5*735;(“&]*59(‘*5;] (31)
v v dv _ OP 1 8 v d av
A A AR Ak 1 CORS 0 32

Differentiating equation (31) with respect to y and
subtracting equation (32) differentiated with respect to x
from the first elliminates the pressure term and the

. resulting equation reduces to the following.
%(Eqn. 32) - &-(Eqn. 31) :
9 [dv du g (8v ou g (dv 3du
5 &) G -F) %8
_ 1 [a% [ av 8% [ au 8% (av) _ a% [ au
: T {5;2("57) ) i) F) o

applying the defination of vorticity and stream function to
the left hand side (LHS) of above equation results in the

following form;




. ow ow _ 9y dw
N LHS-a-E*-?yﬁ 37,537 (34)
where 0 = g; - %% (35)
) . _ 9
and u s 5% v = 5% (36)

the right hand side can be expanded term by term as follows

2
a3 av -
5?2("5§) B Vixx By Viex ¥ Bxx Yx T By Vi
2
3 auy _
§y5xbﬁﬁa HoUpyy T By Uy ¥ Byy Uy T By Upy
aZ Oﬁnq =S uv + u. v + u v u,6 v
dyax |\ oy yyx X yy Xy 'y y Xy
2
9 au
= + + +
572(“57) H Uyyy T Hy Uy T Hyy Uy T Hy Uy

substituting the above expansions into RHS of equation (33)

results in the following simplified form

1
RHS "ﬁ?("wxx MRl N R

y'y By Vaxt Hax Yx© PyMyx

b 4 y
+ - - - +
Hy Yyy = Bylyy = Hyy Yy 7 Hxylx 7 Hyy vy)
making use of the definations of continuity (30) and

vorticity (35) the above expression can be recast as follows.

RHS = ww + 2 W, + B0+ po + 2 pywy +u,

XX Yy

Yy

Y2y Vyy By Ty Y

it can be seen that the above expression is the expanded form

of the fcllowing relation
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2 2
9 a_|o. - 2.9 K3 Y
. RHS = ax['éi(“"]] ¥ ay[ay(““‘]] 23x3y axdy

2 2 2 2
5] "y 9"y 9
+ 9x3x Oydy + Oyoy 9xox

Thus the vorticity transport equatior is:

LTI PREN TR Y AR)

2 2 2 2 2 2
- "y 9oy 3"y 3%y o'y 9d
25}ay 3x3y * 3xox dydy * 3ydy 3x3x

(37)

Substituting the defination of stream function into the
continuity equation causes it to vanish, therefore the stream
finction equation is obtained by subtituting (36) into (35),

which results in the following form.

525§ + 5§5¥ - (38)

Summar izing

Vorticity transport equation
dw 3¢9 dw _ 8y 8w _ 1 3 |o a |9
BenE-RE - { k)] S50
3%y a° 3%y a? 8%y d%
" %5x3y 3x3y ' 3x3x 3ydy ' Bydy 3xdx (39)
Stream function equation
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. APPENDIX B : Co-ordinate Transformation Relations
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where subscripts denote differentiation w.r.t. variable
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APENDIX C : Fortan listing of program "AIRFOIL"

PROGRAM AIRFOIL

------------ PROGRAM TO DEFLECT THE COORDINATES OF THE
AIRFOIL'S LEADING AND TRAILING EDGE, AND SMOOTH THE DATA

DIMENSION X(301),Y(301),Xu(200),YVU(200),XL(200),YL(200)
CHARACTER*15 |INPUT

WRITE(*,%)"' NAME OF FILE CONTAINING AIRFOIL DATA'
READ(*, 1) INPUT

FORMAT(A)

OPEN(1,FILE=INPUT)

------------ READ AIRFOIL CONFIGURATION DATA

WRITE(*,%*)' SLAT LENGTH (CHORD RAT!0)’
READ(*,*)SLAT

WRITE(*,*)’' FLAP LENGTH (CHORD RATI0)’
READ(*,%)FLAP

WRITE(*,*)' SLAT DEFLECTION (DEQREES)’
READ(*,%)SDA

WRITE(*,*)' FLAP DEFLECTION (DEGREES)’
READ(*,*)FDA

P1=3.141592654

SDA=SDA*P|/180.

FDA=FDA*P| /180.

AF = 1.0-FLAP

------------ READ A{RFOIL SURFACE

KOUNT=0

CONT INUE
READ(1,%*,END=10)X(KOUNT+1),Y(KOUNT+1)
KOUNT=KOUNT+1

G0TO §

CONT INUE

CLOSE(1)
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NBODY=KOUNT
WRITE(*,*)' NO OF POINTS READ IN, NBODY=',6NBODY

Crmmemmeemrenme- SET LEADING EDQGE POINTER
XMIN=1000
DO 20 | = 1,NBODY
IF(X(1) .LT. XMIN)THEN
XMIN = X(1)
JLE = |
END IF
20 CONT INUE
C-=mrmmmmemcem—— LOWER SURFACE POINTER
KL=0
DO 30 | = JLE,1,-1

XL(KL+1)=X(1!)
YL(KL+1)=Y(1)

KL=KL+1
30 CONT ! NUE
C---mremmmmmee- UPPER SURFACE POINTER
KU=0
DO 40 | = JLE,NBODY

XU(KU+1)=Xx(1)
YU(KU+1)=Y(1)

KU=KU+1

40 CONT INUE
C
Cz====z=zz-z===zzz=z=z==zz===z======zz=S§LAT=====zz=z======zz=======z==z==
C
Cr=--mememr e SET SLAT POINTERS----==~--emcecrmecncne——"
Co-wmmmmmrnmcceen- (UPPER SURFACE)

IF((SLAT .EQ. 0.0) .OR. (SDA .EQ. 0.0))@0TO 5000

DO 50 t+ = 1,KU

1IF( Xu(1) .EQ. SLAT) TSU = 1.0

IF( XU(1) .LT. SLAT) THEN
JSu=1|

END IF




50 CONT | NUE
C-~---mmccmmmmmmam (LOWER SURFACE)
DO 60 | = 1,KL
IF( XL(1) .EQ. SLAT) TSL = 1.0
IF( XL(1) .LT. SLAT) THEN
JSL=1
END IF
60 CONT INUE
C-~-remmmmemm e GENERATE POINTS CORRESPONDING TO SLAT
YUSLAT=YU(JSU)+(YU(JSU+1)-YU(JSU) )*(SLAT-XU(JSV))
1 / (XU(JSU+1)=-XU(JSU))
YLSLAT=YL(JSL)+(YL(JUSL+1)-YL(JSL))*(SLAT-XL(JSL))
1 /(XL(JSL+1)~X_(JSL))
C---m-mmmmme o (UPPER SURFACE)
C---mmmmmmm - CREATE CAVITY IN ARRAYS
IF( TSU .EQ. 1.0) THEN
JSU=JSU+1
ELSE
DO 70 | = KU,JSU+1,-1
YU(1+1)=YU(1)
XU(1+1)=xu(t)
70 CONT INUE
C----mmmemmm e INSERT INTO ARRAY
YU(JSU+1)=YUSLAT
XU(JSU+1)=SLAT

C--=---memmmee——- RESET POINTERS
KU=KU+1
JSU=JSU+1
END |F
C--r-m=mmmmemee~~ (LOWER SURFACE)
C-=-mmmmmmeeemmm- CREATE CAVITY IN ARRAYS
IF( TSL .EQ. 1.0) THEN
JSL=JSL+1
ELSE
DO 80 | = KL,JSL+1,-1
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YL(1+1)=YL(1)
XL(1+1)=xL(1)
80 CONT I NUE
Commmmmommrmmemnm- INSERT INTO ARRAY
YL(JSL+1)=YLSLAT
XL(JSL+1)=SLAT

C--mommmmreemnem e RESET POINTERS
KL=KL+1
JSL=JSL+1
END IF
Cc
Commmmmmem s ROTATE SLAT ACCORDING TO DEFLECTION ANGLE
Cc APPLY COORDINATE TRANSFORMATION
C--mmmmmmmr e mm e UPPER SURFACE
XS=SLAT

YS=YLSLAT+(YUSLAT-YLSLAT)/2.0
SHYP=SQRT(XS¥XS+YS*YS)
SANG=ATAN2(YS,XS)
DO 130 1| = 1,JSU
CALL SROTAT(XS,YS,SHYP,SANG,SDA,XU(1),YU(!),XX,YY)
XU(1)=xX
YU(l)=YY
130 CONT I NUE
Coemmmmmmm e LOWER SURFACE
DO 140 1| = 1,JSL
CALL SROTAT(XS,YS,SHYP,SANG,SDA,XL(1),YL(I),XX,YY)
XL(1)=xX
YL(1)=YY
140 CONT INUE
IF(SDA .QT. 0.0) THEN

C-mmmmmmmmem o POSITIVE SLAT DEFLECTION
L e ittt REMOVE OVERLAPPING POINTS FROM LOWER
c SURFACE
Cmmmmmmmmmm e FIND HOW MANY POINTS OVERLAP
1FO=0 ’
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181

111

------------- FIND HOW MANY POINTS OVERLAP

Do 110 1 = 1,JSL
IF(XL(1) .QGT. SLAT) THEN

IFO=1FO+1
END IF
CONTINUE
------------- REMOVE |IFO NUMBER OF POINTS FROM LOWER
SURFACE
JTEMP=JSL-1FO+1
DO 120 | = JTEMP,KL-IFO

XL(1)=XL(1+1FO)
YL(1)=YL(1+IFO)
CONT I NUE

------------- RESET POINTERS

KL=KL-1FO
JSL=JSL-IFO

............. REMOVE POINTS FROM UPPER SURFACE FOR

CURVATURE CONTINUITY
iIF (ABS(SDA) .GQT. 5%P1/180.0) THEN
DO 181 t = JsSU-1,KuU-1
XU(1)=xXU(1+1)
YU(1)=YU(1+1)
CONT INVE
KU=KU-1
END IF

------------ NEGATIVE SLAT DEFLECTION
""""""""" REMOVE OVERLAPPING PO:NTS FROM UPPER

SURFACE

DO 111 1 = 1,.)8V
IF(XU(1) .3T. SLAT) THEN
JFO=1FO+1
END IF
CONT INUE
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L REMOVE 1FO NUMBER OF POINTS FROM UPPER

. C SURFACE
JTEMP=JSL-1FO+1

DO 121 | = JTEMP,KU-IFO
XU(1)=XU(1+1FO)
YU(1)=YU(1+1FO)

121 CONT INUE
C-mmmmmrmmmmm RESET POINTERS

KU=KU-IFO

JSU=JSU-IFO
Cr-mmmmemmmm e REMOVE POINTS FROM LOWER SURFACE FOR
C CURVATURE CONTINUITY

IF (ABS(SDA) .GT. 5%P1/180.0) THEN

- DO 182 | = JSL-1,KL-1

XL(1)=XL{1+1)
YLCI)=YL(1+1)
182 CONT INUE
KL=KL-1

‘l" END IF
END IF

5000 CONTINUE

C
Cs===z=z==x=z==sz==z=zzs=c=csx=sxz2z===c====FLAP======zsc=zc==zcsx==cs=s=:=
Cc
C--mmmermmmm - SET FLAP POINTERS~-==--=--c-cocmcorccecccco-
C--m--vmmmmmmmm - (LOWER SURFACE)
1F(( FLAP .EQ. 0.0) .OR. (FDA .EQ. 0.0))GOTO 6000
DO 51 1 = 1,KL
IF( XL(1) .EQ. AF) TFL = 1.0
IF( XL(1) .LT. AF) THEN
JFL=1
END IF
51 CONT INUE
C--rrmmrmmrmmm e (UPPER SURFACE)
DO 61 | = 1,KV




IF( XU(1) .EQ. AF) TFU = 1.0

IF( XU(I) .LT. AF) THEN
. JFU= |
END IF
61 CONT I NUE
Commmrrmrr e e GENERATE POINT CORRESPONDING TO FLAPS

YUFLAP=YU(JFU)+(YU(JFU+1)-YU(JFU) )*(AF-XU(JFU))
1 /(XU(JFU+1)-XU(JFUL))
YLFLAP=YL(JFL)+(YL(JFL+1)-YL(JFL))*(AF-XL(JFL))
1 /(XL(JFL+1)-XL(JFL))

C-=——mmmemmmm e CREATE CAVITY IN ARRAYS
C--m--mrreecmeeee- (UPPER SURFACE)
IF( TFU .EQ. 1.0) THEN
JFU=JFU+1
ELSE
DO 90 | = KU,JFU+1,-1

YU(1+1)=YU(1)
XU(T+1)=xXU(1)

90 CONTINUE
. Commmmmmmerecrcee RESET POINTERS
KU=KU+1
JFU=JFU+1
Crmmmmmmmeccene=- INSERT INTO ARRAY
YU(JFU)=YUFLAP
XU(JFU)=AF
END IF
Crmmmmmmmmcemne e (LOWER SURFACE)
IF( TFL .EQ. 1.0) THEN
JFL=JUFL+1
ELSE
DO 100 | = KL,JFL+1,-1

YL(1+1)=YL( 1)
XL(1+1)=xL(1)

100 CONT I NUE

Lo RESET POINTERS

o o3




150

KL=KL+1
JFL=JFL+1

------------- INSERT INTO ARRAY

YL(JFL)=YLFLAP
XL (JFL)=AF
END IF

------------- ROTATE FLAP ACCORDING TO DEFLECTION ANGLE

APPLY COORDINATE TRANSFORMATION

------------- UPPER SURFACE

XF=AF

YF=YLFLAP+(YUFLAP-YLFLAP)/2.0

FHYP=SQRT (XF*XF+YF*YF)

FANG=ATAN2(YF ,XF)

DO 170 1| = JFU,KU
CALL FROTAT(XF,YF,FHYP,FANQ,FDA,XU(1),YU(1),XX,YY)
XU(1)=XX
YUu(1)=yy

CONT I NUE

------------- LOWER SURFACE

DO 180 | = JFL,KL
CALL FROTAT(XF,YF,FHYP,FANG,FDA,XL(1),YL(!),XX,YY)
XL(1)=XX
YL(i)=yy

CONT INUE

IF(FDA .QT. 0.0)THEN

------------- POSITIVE FLAP DEFLECTION
------------- FIND HOW MANY POINTS OVERLAP ON LOWER

SURFACE
1FO=0
DO 150 | = JFL,KL
IF(XL({!') .LT. AF) THEN
IFO=IFO+1
END IF
CONT INUE
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C---moommecmcae - REMOVE 1FO NUMBER OF OVERLAPPING POJNTS FROM
(o] LOWER SURFACE
DO 160 | = JFL,KL-I1FO
XL(1)=XL(1+1FO)
YL(1)=YL(I1+1FO)

160 CONTINUE
S ikl e RESET POINTERS
KL=KL=-1FO
Commmemmmmeemnmee REMOVE POINTS FROM UPPER SURFACE FOR
c CURVATURE CONTINUITY
IF (TFU .EQ. 1.0) THEN
NOPR=1
ELSE
NOPR=2
END IF
IF (ABS(FDA) .GT. 5%P1/180.) THEN
DO 183 1 = JFU,KU-NOPR

XU(1)=XU(1+NOPR)
YU(1)=YU(1+NOPR)

183 CONT INUE
KU=KU~NOPR
END IF
ELSE
(S b L L NEGATIVE FLAP DEFLECTION
C---rrmmmrm e FIND HOW MANY POINTS OVERLAP ON UPPER
C SURFACE
IFO=0
DO 151 | = JFU,KVU
IF(XU(1) .LT. AF) THEN
1FO= I FO+1
END IF
151 CONT I NUE
Cremrmccr e REMOVE I1FO NUMBER OF OVERLAPPING POINTS
C FROM UPPER SURFACE
DO 161 1| = JFU,KU-IFO
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XU(1)=XU(I+1FO)
YU(!I)=YU(I+1FO)

161 CONT INUE
Cr-mmrmeme e RESET POINTERS
KU=KU-1FO
C-—rmmmrmem REMOVE POINTS FROM LOWER SURFACE FOR
Cc CURVATURE CONTINUITY
IF (TFL .EQ. 1.0) THEN
NOPR=1
ELSE
NOPR=2
END IF
IF (ABS(FDA) .QT. 5%P1/180.) THEN
DO 184 | = JFL,KL-NOPR

XL(t)=XL(14NOPR)
YL(1)=YL(1+NOPR)

184 CONT INUE
KL=KL~-NOPR
END IF

END |IF
6000 CONTINUE
Crmmmmmrmmmm STORE BACK INTO ORIGINAL X, Y ARRAYS

NBODY=0

DO 200 | = KL,1,-1

X(NBODY+1)=XL(1)
Y(NBODY+1)=YL(1)
NBODY=NBODY+1
200 CONT INUE
DO 190 | = 2,KU
X(NBODY+1)=XU(1)
Y{NBODY+1)=YU(1)
NBODY=NBODY+1
190 CONT I NUE
OPEN(2,FILE="OUT1.DAT")
DO 210 | = 1,NBODY
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210

WRITE(2,*)X(1),Y(1)
write(*,%*)i,x(i),y(i)
CONT I NUE

CLOSE(2)

END

SUBROUTINE SROTAT(XS,YS,SHYP,SANG,SDA,XP,YP,XX,YY)

XX= XS - SHYP¥*COS(SANG+SDA) + XP*COS(SDA) - YP*SIN(SDA)
YY= YS - SHYP*SIN(SANG+SDA) + XP*SIN(SDA) + YP*COS(SDA)
RETURN

END

SUBROUTINE FROTAT(XF,YF,FHYP,FANG,FDA,XP,YP,6XX,YY)

XX= XF - FHYP#*COS(-FANG+FDA) + XP*COS(FDA) + YP*SIN(FDA)
YY= YF + FHYP®*SIN(-FANG+FDA) - XP*SIN(FDA) + YP*COS(FDA)
RETURN

END
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. APPENDIX D : Comparison of airfoil co-ordinates before and

after smoothing

Table 5 Lower surface co-ordinates Wortman FX63-137
airfoil

LOWER SURFACE

X Y(orignal)|Y(modified) Diffx1.0E5

AR R RN RN IR
(TR I B R B |
N NIWIme » 1 1 3 8

i




Table 6 Upper surface co-ordinates Wortman FX63-137
airfoil

Upper Surface

.............................................

NN MM tewet O 10N 10 0 3 0 1 0 b 0 e
tiir 0 [ (]

Y(orignal)|Y(modified) {Diffx1.0ES
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. APPENDIX E : Linearization of vorticity and stream

function equations

The vorticity stream function equations in general

coordinates are.

(stream function)

R R R HEE SR w0 @
(vorticity transport)

B BB-RE- R [H(TE)
let "tz "+ S0" and vz p” o+ sy (42)

where n and n+1 are successive time or iteration level

substituting equations (42) into the vorticity equation (41)
n+ n + n + n n+ n - n + n l\+ n
»  J"t & )t (v ) )n(w S0 )E (v Sy )E(w S0 )n

" (T e an) ),

expanding and neglecting terms 0(8)z

o Bt Wgbvn* Wpug - endep - wgdap - _;EH_ (“8‘“"] n)n
= - u" ‘a"+ q)n u" + —;—e[—?j—(u (on)n)n (43)

Same procedure can be applied to the stream function equation

to transform it into the § (deita) form, equation (40) thus
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becomes.

(5 ot - S om] e [ oo - S o) o

) ) e @

it should be noted that all terms appearing as changes
(delta‘'s - 8) between successive levels are unknown, other
exact variables are assumed known from the previous iteration
level. Thus dropping the superscript the above derived

relations. take the final form.

Sw - - I N
JAE * ogdent vt - 0pdve - wpbo - —g(—(wbe )p),

_ 1
- - ugpyt wg * Rl 0 ), (49

=-[—¥3—v§ Jvn]-(—?,—v-—g—ve]-w (46)
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APPENDIX F : Derivation of the pressure Poisson egquation

The non-dimensionalized Navier Stokes equations are

ety =0 (47)
ou + Ju + vau . OP + 1 3 du + d Ju (48)
3t v YU3x dy = 3x & “Re ax|\Mox 3y |Hay
av + v + vav . OP + 1 38 v + 3 av (49)
3t ¥ YUx dy = 3y © "Re 3x|\Max 3y \Hay

Differentiating equation (48) with respect to x and
adding to equation (49) differentiated with respect to y
results in the following.

9 3 .
5;(Eqn. F.2) + 5-;;(Eqn. F.3) :
2 2 2 2
ou av ou 9v a"pP oP

L (a—x-) + [TY] + 2 37 3% + [372 + F'X'Z]

-1 [a% (au) _ 8% (av 8% (au) _ 8% (.av

" "Re {5?2("57] ayax(“ax] * §y§x["€y'] 5?2("37] (50)
the above expression has been simplified using continuity

(47). Terms or. the right hand side (RHS) can be expanded as

follows
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+

+
XXX “x uXX

%
=
e
"
=
c

Myx Uy ¥ By Uyx
2 av
F.) ax[?ax] = H Vexy oy, Vxy + Hxy Yx + By Yxx

+ +
Hye Uy, * B

gqm
~N
x
o
oo
<ic
[
=
c

+
yyx xy Yy

uv +pu v, +tpu v +upu

8 ( av)
3y \May yyy © Hy Vyy

grouping and rearranging the above expanded terms results in

the following simplified RHS for equation (50)

- 1
RHS = —Re {uy[ Vox + vyy] + px( Uy x uyy)

+ ”x("xx + uyy) + uxy( w + uy)}

substituting the above expression back into equation (50)

leads to the following Poisson equation for pressure.

<

2, _fau)%, (av)%,, au @ 1 2
VP-(E;]+(§7)+257& +—k-;{nyv

+ yxvzu +uxv2p + "xy("’ + 2 uy]} (51)

2 2 2 2
2_0 2] 2’'_ 3 F:]
where v -572 + 5;2 & ve = 572 + 5;2

using the transformation relations given in Appendix B the
Poisson equation for pressure in general coordinates is

obtained, which is:
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The above relation is the Poisson equation for pressure

in general coordinates and primitive variables, where ‘u
represents vorticity and ‘u ', 'v ' the velocity components
as defined in the physical domain, the metrics have been
defined in Appendix B. Note that all terms on the right hand

side are assumed known and the equations is solved for the

only unknown variable 'P 'pressure,
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APPENDIX G : Derivation of force and moment coefficients

C ]
d nc/‘

Ce
The forces acting on a body are basically the body
forces (gravity) the shear forces (skin friction) and the
pressure forces. For our analysis we will consider only the
pressure and viscous forces (shear), the body forces are
assumed negilible in comparison to the other forces.
Consider the dominant forces (pressure and shear) acting

on the differential element shown in the following figure

Figure 34 Forces acting on airfoil element

In the above figure x-y are the body axis (fixed to the

chord of the airfoil) and X'~Y' are the wind axis (alligned
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and fixed with the freestream). The aerodynamic forces are
usually measured with respect to the wind axis, the same has
been followed through in this analysis.

FP. represents the force due to pressure acting on element
i | ‘1and is defined as

Fpi= Pi p&qusi (53)

where Pi is non-dimensionalized pressure, P, U are the free
stream properties and Asi is the element area
Fl represents the force due to shear acting on element 'i '
i
and is defined as

Fp.® ct,-—;_ P UL AS (54)

where CC is the skin friction coefficient defined a
i
du av 2
C, = u.(5c + 52) 2 - —=—
£, "itdy  3x i, yeo Re

Using principles of vector analysis the forces can be

I 7'-'!-1 (55)

decomposed into the body axis system

mn
n

x . Fc.cos ei + FP's1n ei
] 1 ]
; F‘is1n ei + FPi°°s Gi (56)

Fy

where Fx and Fy are the forces along the body axis system,
subscript i indicates element dependence and ei is the local

slope, given by

0, = tan"(g%)' (57)
i
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Lift and Drag computation

The forces in the body axis system can now be

transformed into 1ift and drag using the following relations

reference Figure 34.

r
n

, F os - F sin «a
i yic « X,

D, Fyisin a + incos « (58)
where Li and Di are the 1ift and drag forces acting on
element i respectively and « is the airfoil angle of attack.
Sustituting equations (56) into the relations above result

in the foi1owin9 simplified form for equations (58).

Ly = FCiSin(ai_a) - Fpicos(ei-a)
Di = F¢i°°S(ei-“) + FPiS1n(ei-a) (59)
The total

1ift and drag acting on the body is simply the

summation of all element contributions, thus

N-1 N-1
L=YtL, & D =30, (60)
Tm1 Tt

where x is the number of nodes.

Non-dimensionalizing the above relations and writing in
coefficient form equations (60) transform to

2 N-1 2 N-1

c T L. Lo, (61)

C =
L pOu&c im1 ! d pOUOC i1

where CL and Cd now represent the 1ift and drag coefficients

respectively for the section. Sustituting equations (59)

into the above relations results in the following after

simplification.

107




N-1
CL = ¥ { Asi(ct.Sin(ei-“) - Cpicos(ei-a))}

is1 i
(62)
-1 ;
cd = .2 { Asi(c‘.cos(ei-a) + cp'sin(ei-a))}
Tm1 1 1
Where cpi = 2 Pi and c‘i = -2 w/Re

Moment computation

Traditionally the moment acting on an airfoil is
evaluated at the quarter chord location, and is therefore
usually known as the "quarter chord moment”. To evaluate
this quatity, lets consider the following diagram, where

annd Fyare the forces acting on the element ' given by

relations (56).

Figure 35 Moment acting on airfoil element

Then the moment about the quarter chord (xc,yc) due to forces

acting on the element at location (xp,yp) is given by:
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(63)

where ri is the radial distance and F, is the force acting

ty

tangent to the vector ri (see diagram above).

Decomposing the forces Fx and FY into the radial and
i i

tangential components results in the following expression for

the tangential force.

Fti = ins1n 6_ + Fyicos 9_ (64)

substituting relations (56) above results in the following

after simplification.

Fe = Ft_cos(ai -6) - Fysin(e, +0) (65)

i i i
where ei is given by equation (57) and 6. is defined below

y.-Y
o = tan"[—Tc_——;-E) (66)
[~

substituting equation (65) into equation (63) and

integrating about the airfoil results in the following.

N-1
A, = i§1{ri Asi(FPicos(0i+ 6_) - FtiSi"(ef- 9_))} (67)

in coefficient form the above relation can be rewritten as:

N-1
°m ° igi{"i "i("vic“(f’i* 0,) - cp sin(e,- e_)]} (68)
where
3
ry = [ (xp - xc)z + (yp - yc)Z) 2 (69)
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Appendix H : Contour plots; Stream Function, Velocity and
Vorticity

For all cases considered in this study, the contour
plote have been plotted for the stream function, velocity
(x-component of the total velocity) and vorticity, these are

given as Figures 36 to 51.
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STREAM FUNCTION

0.3

VELOCITY (U)
e y

014

Y/C

0.0 1

-0235 000 025 030 073 1.00 1.25 1.50

Y.

-025 0.00 0.25 050 075 1.00 1.25 1.50
X,C
Figure 36 Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 a'eroil,

a = -4°, L o°, 8, 0°, Re = 1x10

11




STREAM FUNCTION

-025 0.00 025 0.50 0.75 1.00 125 150

YA

-025 c 00 025 050 0.75 1.00 1.25 150

X/C

Figure 37 Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 atrfoil,
a = -4°, 81.= o°, st.z 0°, Re = 1x10
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STREAM FUNCTION

-023 000 025 0.30 Oj75 1.00 1.25 1.30

\KS

_01..
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-0.25 0.00 025 0.50 075 1.00 1.25 1.30

X//C
Figure 38 Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 %'irfoi'l,

a = 4°, 5“= 0°, 8“= 0°, Re = 1x10
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Figure 39

Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 %irfoil,
« = 8°, 8 .= °, & = 0°, Re = 1x10
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STREAM FUNCTION

1.50

Figure 40

1.00 1.25

0.00

Constant stream function, velocity and vorticity
contour plots for WOrtmaQ FX 63-137 alrfoil,

a = 12°, 61.= 0°, 8t0= 0°, Re = 1x10
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Figure 41

0.00 1.50

XC
Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 ngrfoil,
a = 16°, 81.= 0°, 8= 0°, Re = 1x10
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Figure 42
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X/C

Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 agrfoil,
« = -4°, 8 .7 5°, 8,.° 0°, Re = 1x10
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STREAM FUNCTION [A=0, F=0, S=5, RE=100K]
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Figure 43 Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 %irfoil,
a = 0°, 8 .= 5°, 8,.° 0°, Re = 1x10
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Figure 44 Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 %1rfoil,
a = 4°, 8 .= 5°, 8,.° 0°, Re = 1x10
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Figure 45
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X C
Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 %irf011,
a = 8°, 8,.° 5°, 8,..° 0°, Re = 1x10

120
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Figure 46 Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 aeroil.
« = 12°, 61.= 5°, 8;.= 0°, Re = 1x10
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Figure 47 Constant stream function, velocity and vorticity
contour plots for Wortman Fx 63~-137 a'lrfoﬂ

= - = 5°, - =
x = -4° .5 8,.° 20°, Re = 1x10°
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Figure 48 Constant stream function, velocity and vorticity

contour plots for Wortman FX 63-137 n'Lr'foil,
a = 0°, 8"= 5°, 8“= 20°, Re = 1x10
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Y/C

X/C

Figure 49 Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 nero'H.
a = 4°, 5,.° 5°, 8,.,° 20°, Re = 1x10
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Figure 50 Constant stream function, velocity and vorticity
contour plots for wortman FX 63-137 .'&rfoil,
a = 8°, 81.- 5°, 6t0= 20° Re = 1x10
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Figure 51 Constant stream function, velocity and vorticity
contour plots for Wortman FX 63-137 airfoil,

«=12° & =5° § =20° Re = 1x10°
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Appendix |: Variation of Pressure and Skin Friction

Coefficient for Wortman FX 63-137 Airfoil

For all cases considered in this study, the chordwise
distribution of skin friction coefficient (Cl) and the
pressure coefficient (CP) on the surface of the Wortman FX
63-137 airfoil has been plotted vs. the chord ratio (x/c).

same are attached in this Appendix as Figures 52 through 67.
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Figure 52 Pressure coefficient (cp) and skin friction
coefficient (c‘) vs. x/c¢
. x = -4°, 8“= 0°, 8“= 0°, Re = 1x10°
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Figure 53 Pressure coefficient (cp) and skin friction
coefficient (c¢) vs. x/c¢

a = 0°, 5, 0°, 8, 0° Re= 1x10%

129




-5.00
.
y
—4.00 = 4°
? 6. = 0°
Q
-t 6‘ = o
-3.00
1
q
—zw -
-
-
-1.00 - Joper
]
0.00 -
1.00
0.00 0.20 0.46 0.60 0.80 1.00
0.05
0.04 = 4°
6.. = Q°
6(. = O°
0.03
0.02 -
0.01
0.00 -]
-0.01 4
0.00 0.20 0.40 0.60 0.80 1.00

X/C

Figure 54 Pressure coefficient (cp) and skin friction
coefficient (cl) vs. x/c¢

a = 4°, 6!¢= 0°, 8‘.= 0°, Re = 1x10°
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Figure 55 Pressure coefficient (cp) and skin friction
coefficient (cf) vs. x/¢

« =8, & = 0°, 8,2 0°, Re= 1x10°
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Figure 56 Pressure coefficient (C_ ) and skin friction
coefficient (c‘) vs., x/c¢

« = 12°, 8= 0°, &, = 0° Re:= 1x10°
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Figure 57 Pressure coefficient (cp) and skin friction
coefficient (c¢) vs. x/c

a = 16°, L 0°, 8= 0°, Re = 1x10°
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Figure 58 Pressure coefficient (Cp) and skin friction

coefficient (c‘) vs. x/c

a = -4°, 8= 5°, 5,,° 0°, Re = 1x10°
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Figure 59 Pressure coefficient (cp) and skin friction

coefficient (ct) vs. x/c

«=0° & = 5°, & ,=0° Re= 1x10°
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Figure 60 Pressure coefficient (cp) and skin friction

coefficient (cﬁ) vs. x/¢
«a=4°, & =5°, & = 0° Re = 1x10°
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Figure 81 Pressure coefficient (cp) and skin friction
coefficient (c‘) vs. x/c

« =8, 8 ° 5°, 8,° 0°, Re = 1x10°
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Figure 62 Pressure coefficient (cp) and skin friction

coefficient (C,) vs. x/c
«=12°, & =5°, & = 0°, Re = 1x10°
le te
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Figure 63 Pressure coefficient (cp) and skin friction

coefficient (cﬂ) vs. x/c¢

«=-4°, § =5°, § =20°, Re = 1x10°
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Figure 64 Pressure coefficient (cp) and skin friction
coefficient (ct) vs. x/¢

a = 0°, 8,7 5, §,.° 20°, Re = 1x10°
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Figure 65 Pressure coefficient (cp) and skin friction
coefficient (ce) vs. x/c¢
«=4° & =5, & =20°, Re= 1% 105
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Figure 66 Pressure coefficient (Cp) and skin friction
coefficient (c£) vs. x/¢

«=8 & =5, 8§ =20° Re:= 1x10°
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Figure 67 Pressure coefficient (cp) and skin friction
coefficient (c‘) vs. x/¢

« = 12°, L 5°, 8,5 20°, Re = 1x10°
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